chore: 文档优化,增加 ai 分析所需的本地新闻测试数据

This commit is contained in:
sansan 2025-11-18 19:51:36 +08:00
parent 9cf3fccacd
commit 5877cb623e
2 changed files with 377 additions and 57 deletions

View File

@ -47,7 +47,7 @@
| [🎯 Core Features](#-core-features) | [🚀 Quick Start](#-quick-start) | [🐳 Docker Deployment](#-docker-deployment) | [🤖 AI Analysis](#-ai-analysis-deployment) |
|:---:|:---:|:---:|:---:|
| [📝 Changelog](#-changelog) | [🔌 MCP Clients](#-mcp-clients) | [❓ FAQ & Support](#-faq--support) | [⭐ Related Projects](#-related-projects) |
| [🔧 Custom Platforms](#custom-monitoring-platforms) | [📝 Keywords Config](#frequencywordstxt-configuration) | | |
| [🔧 Custom Platforms](#custom-monitoring-platforms) | [📝 Keywords Config](#frequencywordstxt-configuration) | [🪄 Sponsors](#-sponsors) | |
</div>
@ -102,8 +102,6 @@ This project uses the API from [newsnow](https://github.com/ourongxing/newsnow)
</details>
> This project uses the API from [newsnow](https://github.com/ourongxing/newsnow) to fetch multi-platform data
## ✨ Core Features
### **Multi-Platform Trending News Aggregation**
@ -474,7 +472,11 @@ AI conversational analysis system based on MCP (Model Context Protocol), enablin
- Cross-platform data comparison (activity stats, keyword co-occurrence)
- Smart summary generation, similar news finding, historical correlation search
> No more manual data file browsing—AI assistant helps you understand the stories behind the news in seconds
> **💡 Usage Tip**: AI features require local news data support
> - Project includes **November 1-15** test data for immediate experience
> - Recommend deploying the project yourself to get more real-time data
>
> See [AI Analysis Deployment](#-ai-analysis-deployment) for details
### **Zero Technical Barrier Deployment**
@ -904,7 +906,41 @@ frequency_words.txt file added **required word** feature, using + sign
<br>
**Method 2:** (See Chinese version for detailed steps)
**Method 2:**
1. Open in PC browser https://botbuilder.feishu.cn/home/my-app
2. Click "New Bot Application"
3. After entering the created application, click "Process Design" > "Create Process" > "Select Trigger"
4. Scroll down, click "Webhook Trigger"
5. Now you'll see "Webhook Address", copy this link to local notepad temporarily, continue with next steps
6. In "Parameters" put the following content, then click "Done"
```json
{
"message_type": "text",
"content": {
"total_titles": "{{Content}}",
"timestamp": "{{Content}}",
"report_type": "{{Content}}",
"text": "{{Content}}"
}
}
```
7. Click "Select Action" > "Send Feishu Message", check "Group Message", then click the input box below, click "Groups I Manage" (if no group, you can create one in Feishu app)
8. Message title fill "TrendRadar Trending Monitor"
9. Most critical part, click + button, select "Webhook Trigger", then arrange as shown in image
![Feishu Bot Config Example](_image/image.png)
10. After configuration, put Webhook address from step 5 into GitHub Secrets `FEISHU_WEBHOOK_URL`
</details>
@ -1399,7 +1435,31 @@ docker exec -it trend-radar ls -la /app/config/
## 🤖 AI Analysis Deployment
TrendRadar v3.0.0 added **MCP (Model Context Protocol)** based AI analysis feature, allowing natural language conversations with news data for deep analysis. Best prerequisite for using **AI features** is running this project for at least one day (accumulate news data).
TrendRadar v3.0.0 added **MCP (Model Context Protocol)** based AI analysis feature, allowing natural language conversations with news data for deep analysis.
### ⚠️ Important Notice Before Use
**Critical: AI features require local news data support**
AI analysis **does not** query real-time online data directly, but analyzes **locally accumulated news data** (stored in the `output` folder)
#### Usage Instructions:
1. **Built-in Test Data**: The `output` directory includes news data from **November 1-15, 2025** by default for quick feature testing
2. **Query Limitations**:
- ✅ Only query data within available date range (Nov 1-15)
- ❌ Cannot query real-time news or future dates
3. **Getting Latest Data**:
- Test data is for quick experience only, **recommend deploying the project yourself** to get real-time data
- Follow [Quick Start](#-quick-start) to deploy and run the project
- After accumulating news data for at least 1 day, you can query the latest trending topics
---
### 1. Quick Deployment
@ -1528,7 +1588,189 @@ Create `.cursor/mcp.json`:
</details>
(Additional client configs including VSCode/Cline/Continue, Claude Code CLI, MCP Inspector, and others available in Chinese version)
<details>
<summary><b>👉 Click to expand: VSCode (Cline/Continue)</b></summary>
#### Cline Configuration
Add in Cline's MCP settings:
**HTTP Mode**:
```json
{
"trendradar": {
"url": "http://localhost:3333/mcp",
"type": "streamableHttp",
"autoApprove": [],
"disabled": false
}
}
```
**STDIO Mode** (Recommended):
```json
{
"trendradar": {
"command": "uv",
"args": [
"--directory",
"/path/to/TrendRadar",
"run",
"python",
"-m",
"mcp_server.server"
],
"type": "stdio",
"disabled": false
}
}
```
#### Continue Configuration
Edit `~/.continue/config.json`:
```json
{
"experimental": {
"modelContextProtocolServers": [
{
"transport": {
"type": "stdio",
"command": "uv",
"args": [
"--directory",
"/path/to/TrendRadar",
"run",
"python",
"-m",
"mcp_server.server"
]
}
}
]
}
}
```
**Usage Examples**:
```
Analyze recent 7 days "Tesla" popularity trend
Generate today's trending summary report
Search "Bitcoin" related news and analyze sentiment
```
</details>
<details>
<summary><b>👉 Click to expand: Claude Code CLI</b></summary>
#### HTTP Mode Configuration
```bash
# 1. Start HTTP service
# Windows: start-http.bat
# Mac/Linux: ./start-http.sh
# 2. Add MCP server
claude mcp add --transport http trendradar http://localhost:3333/mcp
# 3. Verify connection (ensure service started)
claude mcp list
```
#### Usage Examples
```bash
# Query news
claude "Search today's Zhihu trending news, top 10"
# Trend analysis
claude "Analyze 'artificial intelligence' topic popularity trend for the past week"
# Data comparison
claude "Compare Zhihu and Weibo platform attention on 'Bitcoin'"
```
</details>
<details>
<summary><b>👉 Click to expand: MCP Inspector</b> (Debug Tool)</summary>
<br>
MCP Inspector is the official debug tool for testing MCP connections:
#### Usage Steps
1. **Start TrendRadar HTTP Service**:
```bash
# Windows
start-http.bat
# Mac/Linux
./start-http.sh
```
2. **Start MCP Inspector**:
```bash
npx @modelcontextprotocol/inspector
```
3. **Connect in Browser**:
- Visit: `http://localhost:3333/mcp`
- Test "Ping Server" function to verify connection
- Check "List Tools" returns 13 tools:
- Basic Query: get_latest_news, get_news_by_date, get_trending_topics
- Smart Search: search_news, search_related_news_history
- Advanced Analysis: analyze_topic_trend, analyze_data_insights, analyze_sentiment, find_similar_news, generate_summary_report
- System Management: get_current_config, get_system_status, trigger_crawl
</details>
<details>
<summary><b>👉 Click to expand: Other MCP-Compatible Clients</b></summary>
<br>
Any client supporting Model Context Protocol can connect to TrendRadar:
#### HTTP Mode
**Service Address**: `http://localhost:3333/mcp`
**Basic Config Template**:
```json
{
"name": "trendradar",
"url": "http://localhost:3333/mcp",
"type": "http",
"description": "News Trending Aggregation Analysis"
}
```
#### STDIO Mode (Recommended)
**Basic Config Template**:
```json
{
"name": "trendradar",
"command": "uv",
"args": [
"--directory",
"/path/to/TrendRadar",
"run",
"python",
"-m",
"mcp_server.server"
],
"type": "stdio"
}
```
**Notes**:
- Replace `/path/to/TrendRadar` with actual project path
- Windows paths use backslash escape: `C:\\Users\\...`
- Ensure project dependencies installed (ran setup script)
</details>
## ☕ FAQ & Support
@ -1541,28 +1783,13 @@ Create `.cursor/mcp.json`:
<summary><b>👉 Click to expand: Author's Note</b></summary>
<br>
Thanks for all support! Due to sponsor support, the **one-yuan donation** QR code has been removed.
Thanks for all support! Due to 302.AI sponsorship, my personal **one-yuan donation** QR code has been removed.
Previous **one-yuan supporters** are listed in the **Acknowledgments** section at the top.
This project's development and maintenance require significant time, effort, and costs (including AI model fees). With sponsorship support, I can maintain it more confidently.
Currently, major AI model prices are relatively affordable. If you don't have a suitable model yet, clicking **302.AI** below also supports the developer:
<div align="center">
<span style="margin-left: 10px"><a href="https://share.302.ai/mEOUzG" target="_blank"><img src="_image/icon-302ai.png" alt="302ai logo" width="100"/></a></span>
</div>
**Usage Process:**
1. After registration and top-up, enter [Management Dashboard](https://302.ai/dashboard/overview) at top right
2. Click [API Keys](https://302.ai/apis/list) on the left
3. Find default API KEY at page bottom, click eye icon to view, then copy (Note: don't click the copy button on the far right)
4. Cherry Studio has integrated 302.AI, just fill in API key to use (currently must fill key first to see complete model list)
If you already have a suitable model, welcome to **register and try**~
Currently, major AI model prices are relatively affordable. Welcome to register and try, you can **[click here to claim $1 free credit](#-sponsors)**.
</details>
@ -1580,16 +1807,58 @@ If you already have a suitable model, welcome to **register and try**~
## 🪄 Sponsors
> 302.AI is a pay-as-you-go enterprise-level AI resource platform
> Providing the latest and most comprehensive **AI models** and **APIs** on the market, plus various ready-to-use online AI applications.
> **302.AI** is a pay-as-you-go enterprise-level AI resource platform
> Providing the latest and most comprehensive **AI models** and **APIs** on the market, plus various ready-to-use online AI applications
<div align="center">
<span style="margin-left: 10px"><a href="https://share.302.ai/mEOUzG" target="_blank"><img src="_image/banner-302ai-en.jpg" alt="302ai banner" width="800"/></a>
<a href="https://share.302.ai/mEOUzG" target="_blank">
<img src="_image/banner-302ai-en.jpg" alt="302.AI" width="800"/>
</a>
</div>
### 💰 302.AI New User Benefits
> The $1 credit can be used to call various AI models (such as Claude, GPT, etc.)
> This project's AI analysis features require AI model integration. See [AI Analysis Deployment](#-ai-analysis-deployment) for configuration tutorial
[![Register & Claim](https://img.shields.io/badge/Register_302.AI-Claim_$1_Free_Credit-FF6B6B?style=for-the-badge&logo=openai&logoColor=white)](https://share.302.ai/mEOUzG)
<details id="sponsor-tutorial">
<summary><b>👉 Click to expand: 302.AI Usage Tutorial</b></summary>
### Step 1: Get API Key
1. After registration, go to [Management Dashboard](https://302.ai/dashboard/overview) at top right
2. Click [API Keys](https://302.ai/apis/list) on the left
3. Find default API KEY at page bottom, **click eye icon to view**, then copy
(⚠️ Note: Don't click the copy button on the far right)
### Step 2: Configure in Cherry Studio
1. Open Cherry Studio, go to settings
2. Select **"302.AI"** as model provider
3. Paste the API Key you just copied
4. Click **Manage**, now you can use all supported AI models
**Tip:** Cherry Studio has natively integrated 302.AI, you can see the complete model list after configuration.
**Q: How long does $1 free credit last?**
A: Depends on usage frequency and model selection, can run multiple test sessions.
**Q: What after free credit runs out?**
A: You can top up as needed, pay-as-you-go. Major AI model prices are now relatively affordable.
</details>
<br>
---
### Common Questions

109
readme.md
View File

@ -46,7 +46,7 @@
| [🎯 核心功能](#-核心功能) | [🚀 快速开始](#-快速开始) | [🐳 Docker部署](#-docker-部署) | [🤖 AI分析专区](#-ai-智能分析部署) |
|:---:|:---:|:---:|:---:|
| [📝 更新日志](#-更新日志) | [🔌 MCP客户端](#-mcp-客户端) | [❓ 答疑与公益](#问题答疑与公益捐助) | [⭐ 项目相关](#项目相关) |
| [🔧 自定义监控平台](#自定义监控平台) | [📝 frequency_words.txt 配置](#frequencywordstxt-配置教程) | | |
| [🔧 自定义监控平台](#自定义监控平台) | [📝 推送关键词配置](#frequencywordstxt-配置教程) | [🪄 赞助商](#-赞助商) | |
</div>
@ -517,7 +517,11 @@ weight:
- 跨平台数据对比(活跃度统计、关键词共现)
- 智能摘要生成、相似新闻查找、历史关联检索
> 告别手动翻阅数据文件AI 助手帮你秒懂新闻背后的故事
> **💡 使用提示**AI 功能需要本地新闻数据支持
> - 项目自带 **11月1-15日** 测试数据,可立即体验
> - 建议自行部署运行项目,获取更实时的数据
>
> 详见 [AI 智能分析部署](#-ai-智能分析部署)
### **零技术门槛部署**
@ -1472,7 +1476,31 @@ docker exec -it trend-radar ls -la /app/config/
## 🤖 AI 智能分析部署
TrendRadar v3.0.0 新增了基于 **MCP (Model Context Protocol)** 的 AI 分析功能,让你可以通过自然语言与新闻数据对话,进行深度分析。使用 **AI 功能** 的最佳前提是已使用本项目至少运行一天(积累新闻数据)
TrendRadar v3.0.0 新增了基于 **MCP (Model Context Protocol)** 的 AI 分析功能,让你可以通过自然语言与新闻数据对话,进行深度分析。
### ⚠️ 使用前必读
**重要提示AI 功能需要本地新闻数据支持**
AI 分析功能**不是**直接查询网络实时数据,而是分析你**本地已积累的新闻数据**(存储在 `output` 文件夹中)
#### 使用说明:
1. **项目自带测试数据**`output` 目录默认包含 **2025年11月1日11月15日** 的新闻数据,可用于快速体验 AI 功能
2. **查询限制**
- ✅ 只能查询已有日期范围内的数据11月1-15日
- ❌ 无法查询实时新闻或未来日期
3. **获取最新数据**
- 测试数据仅供快速体验,**建议自行部署项目**获取实时数据
- 按照 [快速开始](#-快速开始) 部署运行项目
- 等待至少 1 天积累新闻数据后,即可查询最新热点
---
### 1. 快速部署
@ -1790,35 +1818,17 @@ MCP Inspector 是官方调试工具,用于测试 MCP 连接:
> 如果你想支持本项目,可通过微信搜索**腾讯公益**,对里面的**助学计划**随心捐助~
>
> 我还在为信息过载而焦虑,他们却在信息荒漠中挣扎,连学习的机会都没有,所以他们比我更需要支持。
> 我还在为信息过载而焦虑,他们却在信息荒漠中挣扎,他们比我更需要支持。
<details>
<summary><b>👉 点击展开:作者有话说</b></summary>
<br>
感谢各位支持!因获得赞助商赞助,现已移除**一元点赞**打赏码。
感谢各位支持!因获得赞助商赞助,现已移除我个人的**一元点赞**打赏码。
之前参与**一元点赞**的朋友已收录至顶部**致谢名单**。
本项目开发和维护投入了大量时间、精力和成本(含 AI 模型费用),有了赞助支持后可以更安心维护。
目前大厂模型价格已相对亲民,如果你手上暂无合适的模型,点击下方**302.AI**也是对开发者的支持:
<div align="center">
<span style="margin-left: 10px"><a href="https://share.302.ai/mEOUzG" target="_blank"><img src="_image/icon-302ai.png" alt="302.AI logo" width="100"/></a></span>
</div>
**使用流程:**
1. 注册并充值后,进入右上角 [管理后台](https://302.ai/dashboard/overview)
2. 点击左侧 [API Keys](https://302.ai/apis/list)
3. 在页面下方找到默认 API KEY点击眼睛图标查看然后复制注意不是点最右侧的复制按钮
4. Cherry Studio 已集成 302.AI直接填入 API 密钥即可使用(当前必须得先填密钥才能看到完整模型列表)
若你已有合适的模型,也欢迎先**注册体验**~
</details>
- **GitHub Issues**:适合针对性强的解答。提问时请提供完整信息(截图、错误日志、系统环境等)。
@ -1833,18 +1843,59 @@ MCP Inspector 是官方调试工具,用于测试 MCP 连接:
</div>
## 🪄赞助商
> 302.AI 是一个按用量付费的企业级 AI 资源平台
> 提供市场上最新、最全面的 **AI模型****API**,以及多种开箱即用的在线 AI 应用。
## 🪄 赞助商
> **302.AI** 是按用量付费的企业级 AI 资源平台
> 提供市场上最新、最全面的 **AI 模型**和 **API**,以及多种开箱即用的在线 AI 应用
<div align="center">
<span style="margin-left: 10px"><a href="https://share.302.ai/mEOUzG" target="_blank"><img src="_image/banner-302ai-zh.jpg" alt="302ai banner" width="800"/></a>
<a href="https://share.302.ai/mEOUzG" target="_blank">
<img src="_image/banner-302ai-zh.jpg" alt="302.AI" width="800"/>
</a>
</div>
### 💰 302.AI 新用户福利
> 领取的 1 美元可用于调用各种 AI 大模型(如 Claude、GPT 等)
> 本项目 AI 分析功能需配置大模型使用,配置教程详见 [AI智能分析部署](#-ai-智能分析部署)
[![注册领取](https://img.shields.io/badge/注册_302.AI-领取_1_美元免费测试额度-FF6B6B?style=for-the-badge&logo=openai&logoColor=white)](https://share.302.ai/mEOUzG)
<details id="sponsor-tutorial">
<summary><b>👉 点击展开: 302.AI 使用教程</b></summary>
### 第 1 步:获取 API Key
1. 注册后,进入右上角 [管理后台](https://302.ai/dashboard/overview)
2. 点击左侧 [API Keys](https://302.ai/apis/list)
3. 在页面下方找到默认 API KEY**点击眼睛图标查看**,然后复制
(⚠️ 注意:不是点最右侧的复制按钮)
### 第 2 步:在 Cherry Studio 中配置
1. 打开 Cherry Studio进入设置
2. 模型提供商选择 **"302.AI"**
3. 粘贴刚才复制的 API Key
4. 点击**管理**,现在可以使用所有支持的 AI 模型了
**提示:** Cherry Studio 已原生集成 302.AI配置后即可看到完整模型列表。
**Q: 1 美元免费额度能用多久?**
A: 取决于使用频率和模型选择,可以进行多次测试体验。
**Q: 免费额度用完后怎么办?**
A: 可以按需充值,按量付费。目前大厂模型价格已相对亲民。
</details>
<br>
---
### 常见问题