# coding=utf-8 import json import time import random from datetime import datetime import webbrowser from typing import Dict, List, Tuple, Optional, Union from pathlib import Path import os import requests import pytz # 配置常量 CONFIG = { "FEISHU_SEPARATOR": "━━━━━━━━━━━━━━━━━━━", # 飞书消息分割线,注意,其它类型的分割线可能会被飞书过滤而不显示 "REQUEST_INTERVAL": 1000, # 请求间隔(毫秒) "FEISHU_REPORT_TYPE": "daily", # 飞书报告类型: "current"|"daily"|"both" "RANK_THRESHOLD": 5, # 排名高亮阈值 "USE_PROXY": True, # 是否启用代理 "DEFAULT_PROXY": "http://127.0.0.1:10086", "CONTINUE_WITHOUT_FEISHU": True, # 控制在没有飞书 webhook URL 时是否继续执行爬虫, 如果 True ,会依然进行爬虫行为,并在 github 上持续的生成爬取的新闻数据 "FEISHU_WEBHOOK_URL": "", # 飞书机器人的 webhook URL,大概长这样:https://www.feishu.cn/flow/api/trigger-webhook/xxxx, 默认为空,推荐通过GitHub Secrets设置 } class TimeHelper: """时间处理工具""" @staticmethod def get_beijing_time() -> datetime: """获取北京时间""" return datetime.now(pytz.timezone("Asia/Shanghai")) @staticmethod def format_date_folder() -> str: """返回日期文件夹格式""" return TimeHelper.get_beijing_time().strftime("%Y年%m月%d日") @staticmethod def format_time_filename() -> str: """返回时间文件名格式""" return TimeHelper.get_beijing_time().strftime("%H时%M分") class FileHelper: """文件操作工具""" @staticmethod def ensure_directory_exists(directory: str) -> None: """确保目录存在""" Path(directory).mkdir(parents=True, exist_ok=True) @staticmethod def get_output_path(subfolder: str, filename: str) -> str: """获取输出文件路径""" date_folder = TimeHelper.format_date_folder() output_dir = Path("output") / date_folder / subfolder FileHelper.ensure_directory_exists(str(output_dir)) return str(output_dir / filename) class DataFetcher: """数据获取器""" def __init__(self, proxy_url: Optional[str] = None): self.proxy_url = proxy_url def fetch_data( self, id_info: Union[str, Tuple[str, str]], max_retries: int = 2, min_retry_wait: int = 3, max_retry_wait: int = 5, ) -> Tuple[Optional[str], str, str]: """获取指定ID数据,支持重试""" # 解析ID和别名 if isinstance(id_info, tuple): id_value, alias = id_info else: id_value = id_info alias = id_value url = f"https://newsnow.busiyi.world/api/s?id={id_value}&latest" # 设置代理 proxies = None if self.proxy_url: proxies = {"http": self.proxy_url, "https": self.proxy_url} headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Accept": "application/json, text/plain, */*", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Connection": "keep-alive", "Cache-Control": "no-cache", } retries = 0 while retries <= max_retries: try: print(f"正在请求 {id_value} 数据... (尝试 {retries + 1}/{max_retries + 1})") response = requests.get(url, proxies=proxies, headers=headers, timeout=10) response.raise_for_status() data_text = response.text data_json = json.loads(data_text) # 检查响应状态,接受success和cache status = data_json.get("status", "未知") if status not in ["success", "cache"]: raise ValueError(f"响应状态异常: {status}") status_info = "最新数据" if status == "success" else "缓存数据" print(f"成功获取 {id_value} 数据({status_info})") return data_text, id_value, alias except Exception as e: retries += 1 if retries <= max_retries: # 计算重试等待时间:基础时间+递增时间 base_wait = random.uniform(min_retry_wait, max_retry_wait) additional_wait = (retries - 1) * random.uniform(1, 2) wait_time = base_wait + additional_wait print(f"请求 {id_value} 失败: {e}. 将在 {wait_time:.2f} 秒后重试...") time.sleep(wait_time) else: print(f"请求 {id_value} 失败: {e}. 已达到最大重试次数。") return None, id_value, alias return None, id_value, alias def crawl_websites( self, ids_list: List[Union[str, Tuple[str, str]]], request_interval: int = CONFIG["REQUEST_INTERVAL"], ) -> Tuple[Dict, Dict, List]: """爬取多个网站数据""" results = {} id_to_alias = {} failed_ids = [] for i, id_info in enumerate(ids_list): # 解析ID和别名 if isinstance(id_info, tuple): id_value, alias = id_info else: id_value = id_info alias = id_value id_to_alias[id_value] = alias # 获取数据 response, _, _ = self.fetch_data(id_info) if response: try: data = json.loads(response) results[id_value] = {} for index, item in enumerate(data.get("items", []), 1): title = item["title"] url = item.get("url", "") mobile_url = item.get("mobileUrl", "") if title in results[id_value]: # 标题已存在,更新排名 results[id_value][title]["ranks"].append(index) else: # 新标题 results[id_value][title] = { "ranks": [index], "url": url, "mobileUrl": mobile_url } except json.JSONDecodeError: print(f"解析 {id_value} 响应失败,非有效JSON") failed_ids.append(id_value) except Exception as e: print(f"处理 {id_value} 数据出错: {e}") failed_ids.append(id_value) else: failed_ids.append(id_value) # 添加请求间隔 if i < len(ids_list) - 1: actual_interval = request_interval + random.randint(-10, 20) actual_interval = max(50, actual_interval) # 最少50毫秒 print(f"等待 {actual_interval} 毫秒后发送下一个请求...") time.sleep(actual_interval / 1000) print(f"\n请求总结:") print(f"- 成功获取数据: {list(results.keys())}") print(f"- 请求失败: {failed_ids}") return results, id_to_alias, failed_ids class DataProcessor: """数据处理器""" @staticmethod def save_titles_to_file(results: Dict, id_to_alias: Dict, failed_ids: List) -> str: """保存标题到文件""" file_path = FileHelper.get_output_path("txt", f"{TimeHelper.format_time_filename()}.txt") with open(file_path, "w", encoding="utf-8") as f: # 写入成功数据 for id_value, title_data in results.items(): display_name = id_to_alias.get(id_value, id_value) f.write(f"{display_name}\n") for i, (title, info) in enumerate(title_data.items(), 1): if isinstance(info, dict): ranks = info.get("ranks", []) url = info.get("url", "") mobile_url = info.get("mobileUrl", "") rank_str = ",".join(map(str, ranks)) line = f"{i}. {title} (排名:{rank_str})" if url: line += f" [URL:{url}]" if mobile_url: line += f" [MOBILE:{mobile_url}]" f.write(line + "\n") else: # 兼容旧格式 rank_str = ",".join(map(str, info)) f.write(f"{i}. {title} (排名:{rank_str})\n") f.write("\n") # 写入失败信息 if failed_ids: f.write("==== 以下ID请求失败 ====\n") for id_value in failed_ids: display_name = id_to_alias.get(id_value, id_value) f.write(f"{display_name} (ID: {id_value})\n") return file_path @staticmethod def load_frequency_words(frequency_file: str = "frequency_words.txt") -> Tuple[List[Dict], List[str]]: """加载频率词配置""" frequency_path = Path(frequency_file) if not frequency_path.exists(): print(f"频率词文件 {frequency_file} 不存在") return [], [] with open(frequency_path, "r", encoding="utf-8") as f: content = f.read() # 按双空行分割词组 word_groups = [group.strip() for group in content.split("\n\n") if group.strip()] processed_groups = [] filter_words = [] for group in word_groups: words = [word.strip() for word in group.split("\n") if word.strip()] # 分类词汇 group_required_words = [] # +开头必须词 group_normal_words = [] # 普通频率词 group_filter_words = [] # !开头过滤词 for word in words: if word.startswith("!"): filter_words.append(word[1:]) group_filter_words.append(word[1:]) elif word.startswith("+"): group_required_words.append(word[1:]) else: group_normal_words.append(word) # 只处理包含有效词的组 if group_required_words or group_normal_words: # 生成组标识 if group_normal_words: group_key = " ".join(group_normal_words) else: group_key = " ".join(group_required_words) processed_groups.append({ 'required': group_required_words, 'normal': group_normal_words, 'group_key': group_key }) return processed_groups, filter_words @staticmethod def read_all_today_titles() -> Tuple[Dict, Dict, Dict]: """读取当天所有标题文件""" date_folder = TimeHelper.format_date_folder() txt_dir = Path("output") / date_folder / "txt" if not txt_dir.exists(): print(f"今日文件夹 {txt_dir} 不存在") return {}, {}, {} all_results = {} id_to_alias = {} title_info = {} # 按时间排序处理文件 files = sorted([f for f in txt_dir.iterdir() if f.suffix == ".txt"]) for file_path in files: time_info = file_path.stem with open(file_path, "r", encoding="utf-8") as f: content = f.read() sections = content.split("\n\n") for section in sections: if not section.strip() or "==== 以下ID请求失败 ====" in section: continue lines = section.strip().split("\n") if len(lines) < 2: continue source_name = lines[0].strip() # 解析标题数据 title_data = {} for line in lines[1:]: if line.strip(): try: match_num = None title_part = line.strip() # 提取序号 if ". " in title_part and title_part.split(". ")[0].isdigit(): parts = title_part.split(". ", 1) match_num = int(parts[0]) title_part = parts[1] # 提取mobileUrl mobile_url = "" if " [MOBILE:" in title_part: title_part, mobile_part = title_part.rsplit(" [MOBILE:", 1) if mobile_part.endswith("]"): mobile_url = mobile_part[:-1] # 提取url url = "" if " [URL:" in title_part: title_part, url_part = title_part.rsplit(" [URL:", 1) if url_part.endswith("]"): url = url_part[:-1] # 提取排名 ranks = [] if " (排名:" in title_part: title, rank_str = title_part.rsplit(" (排名:", 1) rank_str = rank_str.rstrip(")") ranks = [int(r) for r in rank_str.split(",") if r.strip() and r.isdigit()] else: title = title_part if not ranks and match_num is not None: ranks = [match_num] if not ranks: ranks = [99] title_data[title] = { "ranks": ranks, "url": url, "mobileUrl": mobile_url } except Exception as e: print(f"解析标题行出错: {line}, 错误: {e}") DataProcessor._process_source_data( source_name, title_data, time_info, all_results, title_info, id_to_alias ) # 转换为ID结果 id_results = {} id_title_info = {} for name, titles in all_results.items(): for id_value, alias in id_to_alias.items(): if alias == name: id_results[id_value] = titles id_title_info[id_value] = title_info[name] break return id_results, id_to_alias, id_title_info @staticmethod def _process_source_data( source_name: str, title_data: Dict, time_info: str, all_results: Dict, title_info: Dict, id_to_alias: Dict, ) -> None: """处理来源数据,合并重复标题""" if source_name not in all_results: # 首次遇到此来源 all_results[source_name] = title_data if source_name not in title_info: title_info[source_name] = {} # 记录标题信息 for title, data in title_data.items(): if isinstance(data, dict): ranks = data.get("ranks", []) url = data.get("url", "") mobile_url = data.get("mobileUrl", "") else: ranks = data if isinstance(data, list) else [] url = "" mobile_url = "" title_info[source_name][title] = { "first_time": time_info, "last_time": time_info, "count": 1, "ranks": ranks, "url": url, "mobileUrl": mobile_url, } # 生成反向ID映射 reversed_id = source_name.lower().replace(" ", "-") id_to_alias[reversed_id] = source_name else: # 更新已有来源 for title, data in title_data.items(): if isinstance(data, dict): ranks = data.get("ranks", []) url = data.get("url", "") mobile_url = data.get("mobileUrl", "") else: ranks = data if isinstance(data, list) else [] url = "" mobile_url = "" if title not in all_results[source_name]: # 新标题 all_results[source_name][title] = { "ranks": ranks, "url": url, "mobileUrl": mobile_url } title_info[source_name][title] = { "first_time": time_info, "last_time": time_info, "count": 1, "ranks": ranks, "url": url, "mobileUrl": mobile_url, } else: # 更新已有标题 existing_data = all_results[source_name][title] existing_ranks = existing_data.get("ranks", []) existing_url = existing_data.get("url", "") existing_mobile_url = existing_data.get("mobileUrl", "") merged_ranks = existing_ranks.copy() for rank in ranks: if rank not in merged_ranks: merged_ranks.append(rank) all_results[source_name][title] = { "ranks": merged_ranks, "url": existing_url or url, "mobileUrl": existing_mobile_url or mobile_url } title_info[source_name][title]["last_time"] = time_info title_info[source_name][title]["ranks"] = merged_ranks title_info[source_name][title]["count"] += 1 # 保留第一个有效URL if not title_info[source_name][title].get("url"): title_info[source_name][title]["url"] = url if not title_info[source_name][title].get("mobileUrl"): title_info[source_name][title]["mobileUrl"] = mobile_url class StatisticsCalculator: """统计计算器""" @staticmethod def count_word_frequency( results: Dict, word_groups: List[Dict], filter_words: List[str], id_to_alias: Dict, title_info: Optional[Dict] = None, rank_threshold: int = CONFIG["RANK_THRESHOLD"], ) -> Tuple[List[Dict], int]: """统计词频,支持必须词、频率词、过滤词""" word_stats = {} total_titles = 0 processed_titles = {} # 跟踪已处理标题 if title_info is None: title_info = {} # 初始化统计对象 for group in word_groups: group_key = group['group_key'] word_stats[group_key] = {"count": 0, "titles": {}} # 遍历标题进行统计 for source_id, titles_data in results.items(): total_titles += len(titles_data) if source_id not in processed_titles: processed_titles[source_id] = {} for title, title_data in titles_data.items(): if title in processed_titles.get(source_id, {}): continue title_lower = title.lower() # 优先级1:过滤词检查 contains_filter_word = any( filter_word.lower() in title_lower for filter_word in filter_words ) if contains_filter_word: continue # 兼容数据格式 if isinstance(title_data, dict): source_ranks = title_data.get("ranks", []) source_url = title_data.get("url", "") source_mobile_url = title_data.get("mobileUrl", "") else: source_ranks = title_data if isinstance(title_data, list) else [] source_url = "" source_mobile_url = "" # 检查每个词组 for group in word_groups: group_key = group['group_key'] required_words = group['required'] normal_words = group['normal'] # 优先级2:必须词检查 if required_words: all_required_present = all( req_word.lower() in title_lower for req_word in required_words ) if not all_required_present: continue # 优先级3:频率词检查 if normal_words: any_normal_present = any( normal_word.lower() in title_lower for normal_word in normal_words ) if not any_normal_present: continue # 如果只有必须词没有频率词,且所有必须词都匹配了,那么也算匹配 # 如果既有必须词又有频率词,那么必须词全部匹配且至少一个频率词匹配 # 如果只有频率词,那么至少一个频率词匹配 # 匹配成功,记录数据 word_stats[group_key]["count"] += 1 if source_id not in word_stats[group_key]["titles"]: word_stats[group_key]["titles"][source_id] = [] # 获取标题详细信息 first_time = "" last_time = "" count_info = 1 ranks = source_ranks if source_ranks else [] url = source_url mobile_url = source_mobile_url if (title_info and source_id in title_info and title in title_info[source_id]): info = title_info[source_id][title] first_time = info.get("first_time", "") last_time = info.get("last_time", "") count_info = info.get("count", 1) if "ranks" in info and info["ranks"]: ranks = info["ranks"] url = info.get("url", source_url) mobile_url = info.get("mobileUrl", source_mobile_url) if not ranks: ranks = [99] time_display = StatisticsCalculator._format_time_display(first_time, last_time) source_alias = id_to_alias.get(source_id, source_id) word_stats[group_key]["titles"][source_id].append({ "title": title, "source_alias": source_alias, "first_time": first_time, "last_time": last_time, "time_display": time_display, "count": count_info, "ranks": ranks, "rank_threshold": rank_threshold, "url": url, "mobileUrl": mobile_url, }) # 标记已处理 if source_id not in processed_titles: processed_titles[source_id] = {} processed_titles[source_id][title] = True break # 只匹配第一个词组 # 转换统计结果 stats = [] for group_key, data in word_stats.items(): all_titles = [] for source_id, title_list in data["titles"].items(): all_titles.extend(title_list) stats.append({ "word": group_key, "count": data["count"], "titles": all_titles, "percentage": ( round(data["count"] / total_titles * 100, 2) if total_titles > 0 else 0 ), }) stats.sort(key=lambda x: x["count"], reverse=True) return stats, total_titles @staticmethod def _format_rank_for_html(ranks: List[int], rank_threshold: int = 5) -> str: """格式化HTML排名显示""" if not ranks: return "" unique_ranks = sorted(set(ranks)) min_rank = unique_ranks[0] max_rank = unique_ranks[-1] if min_rank <= rank_threshold: if min_rank == max_rank: return f"[{min_rank}]" else: return f"[{min_rank} - {max_rank}]" else: if min_rank == max_rank: return f"[{min_rank}]" else: return f"[{min_rank} - {max_rank}]" @staticmethod def _format_rank_for_feishu(ranks: List[int], rank_threshold: int = 5) -> str: """格式化飞书排名显示""" if not ranks: return "" unique_ranks = sorted(set(ranks)) min_rank = unique_ranks[0] max_rank = unique_ranks[-1] if min_rank <= rank_threshold: if min_rank == max_rank: return f"**[{min_rank}]**" else: return f"**[{min_rank} - {max_rank}]**" else: if min_rank == max_rank: return f"[{min_rank}]" else: return f"[{min_rank} - {max_rank}]" @staticmethod def _format_time_display(first_time: str, last_time: str) -> str: """格式化时间显示""" if not first_time: return "" if first_time == last_time or not last_time: return first_time else: return f"[{first_time} ~ {last_time}]" class ReportGenerator: """报告生成器""" @staticmethod def generate_html_report( stats: List[Dict], total_titles: int, failed_ids: Optional[List] = None, is_daily: bool = False, ) -> str: """生成HTML报告""" if is_daily: filename = "当日统计.html" else: filename = f"{TimeHelper.format_time_filename()}.html" file_path = FileHelper.get_output_path("html", filename) html_content = ReportGenerator._create_html_content( stats, total_titles, failed_ids, is_daily ) with open(file_path, "w", encoding="utf-8") as f: f.write(html_content) # 当日统计同时生成根目录index.html if is_daily: root_file_path = Path("index.html") with open(root_file_path, "w", encoding="utf-8") as f: f.write(html_content) print(f"当日统计报告已保存到根目录: {root_file_path.resolve()}") return file_path @staticmethod def _create_html_content( stats: List[Dict], total_titles: int, failed_ids: Optional[List] = None, is_daily: bool = False, ) -> str: """创建HTML内容""" html = """
报告类型: 当日汇总
" now = TimeHelper.get_beijing_time() html += f"总标题数: {total_titles}
" html += f"生成时间: {now.strftime('%Y-%m-%d %H:%M:%S')}
" # 失败信息 if failed_ids and len(failed_ids) > 0: html += """| 排名 | 频率词 | 出现次数 | 占比 | 相关标题 |
|---|---|---|---|---|
| {i} | {escaped_word} | {stat['count']} | {stat['percentage']}% | {" ".join(formatted_titles)} |